Polynomial Approximation of Functions in Sobolev Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Approximation of Functions in Sobolev Spaces

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

A note on polynomial approximation in Sobolev spaces

Résumé: Pour des domaines étoilés on donne des nouvelles bornes sur les constants dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l’excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à l’angle extérieur. L’outil central est un nouvel opérateur de projection sur l’espac...

متن کامل

Kernel based approximation in Sobolev spaces with radial basis functions

In this paper, we study several radial basis function approximation schemes in Sobolev spaces. We obtain an optional error estimate by using a class of smoothing operators. We also discussed sufficient conditions for the smoothing operators to attain the desired approximation order. We then construct the smoothing operators by some compactly supported radial kernels, and use them to approximate...

متن کامل

On approximation of functions from Sobolev spaces on metric graphs

Some results on the approximation of functions from the Sobolev spaces on metric graphs by step functions are obtained. In particular, we show that the approximation numbers an of the embedding operator of the Sobolev space L (G) on a graph G of finite length |G| into the space L(G, μ), where μ is an arbitrary finite Borel measure on G, satisfy the inequality an ≤ |G| 1/p′μ(G)1/pn−1, 1 < p < ∞....

متن کامل

Approximation in Sobolev Spaces by Kernel Expansions

For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g. on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the “native” Hilbert space of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1980

ISSN: 0025-5718

DOI: 10.2307/2006095