Polynomial Approximation of Functions in Sobolev Spaces
نویسندگان
چکیده
منابع مشابه
Polynomial Approximation of Functions in Sobolev Spaces
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...
متن کاملA note on polynomial approximation in Sobolev spaces
Résumé: Pour des domaines étoilés on donne des nouvelles bornes sur les constants dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l’excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à l’angle extérieur. L’outil central est un nouvel opérateur de projection sur l’espac...
متن کاملKernel based approximation in Sobolev spaces with radial basis functions
In this paper, we study several radial basis function approximation schemes in Sobolev spaces. We obtain an optional error estimate by using a class of smoothing operators. We also discussed sufficient conditions for the smoothing operators to attain the desired approximation order. We then construct the smoothing operators by some compactly supported radial kernels, and use them to approximate...
متن کاملOn approximation of functions from Sobolev spaces on metric graphs
Some results on the approximation of functions from the Sobolev spaces on metric graphs by step functions are obtained. In particular, we show that the approximation numbers an of the embedding operator of the Sobolev space L (G) on a graph G of finite length |G| into the space L(G, μ), where μ is an arbitrary finite Borel measure on G, satisfy the inequality an ≤ |G| 1/p′μ(G)1/pn−1, 1 < p < ∞....
متن کاملApproximation in Sobolev Spaces by Kernel Expansions
For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g. on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the “native” Hilbert space of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1980
ISSN: 0025-5718
DOI: 10.2307/2006095